Derivative estimation based on difference sequence via locally weighted least squares regression
نویسندگان
چکیده
A new method is proposed for estimating derivatives of a nonparametric regression function. By applying Taylor expansion technique to a derived symmetric difference sequence, we obtain a sequence of approximate linear regression representation in which the derivative is just the intercept term. Using locally weighted least squares, we estimate the derivative in the linear regression model. The estimator has less bias in both valleys and peaks of the true derivative function. For the special case of a domain with equispaced design points, the asymptotic bias and variance are derived; consistency and asymptotic normality are established. In simulations our estimators have less bias and mean square error than its main competitors, especially second order derivative estimator.
منابع مشابه
Multivariate Locally Weighted Polynomial Fitting and Partial Derivative Estimation
Nonparametric regression estimator based on locally weighted least squares fitting has been studied by Fan and Ruppert and Wand. The latter paper also studies, in the univariate case, nonparametric derivative estimators given by a locally weighted polynomial fitting. Compared with traditional kernel estimators, these estimators are often of simpler form and possess some better properties. In th...
متن کاملTwo-Stage Robust Optical Flow Estimation
We formulate optical flow estimation as a two-stage regression problem. Based on characteristics of these two regression models and conclusions on modern regression methods, we choose a Least Trimmed Squares followed by weighted Least Squares estimator to solve the optical flow constraint (OFC); and at places where this one-stage robust method fails due to poor derivative quality, we use a Leas...
متن کاملEstimating Variances in Weighted Least-Squares Estimation of Distributional Parameters
Abstract: Many estimation methods have been proposed for the parameters of statistical distribution. The least squares estimation method, based on a regression model or probability plot, is frequently used by practitioners since its implementation procedure is extremely simple in complete and censoring data cases. However, in the procedure, heteroscedasticity is present in the used regression m...
متن کاملA Family of Geographically Weighted Regression Models
A Bayesian treatment of locally linear regression methods introduced in McMillen (1996) and labeled geographically weighted regressions (GWR) in Brunsdon, Fotheringham and Charlton (1996) is set forth in this paper. GWR uses distance-decay-weighted sub-samples of the data to produce locally linear estimates for every point in space. While the use of locally linear regression represents a true c...
متن کاملSmoothed Nonparametric Derivative Estimation Based on Weighted Difference Sequences
We present a simple but effective fully automated framework for estimating derivatives nonparametrically based on weighted difference sequences. Although regression estimation is often studied more, derivative estimation is of equal importance. For example in the study of exploration of structures in curves, comparison of regression curves, analysis of human growth data, etc. Via the introduced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 16 شماره
صفحات -
تاریخ انتشار 2015